


Physiology Formulae
Â
Reynolds' Number

Feature | Laminar flow | Turbulent flow |
Pattern | Streamlined | Disordered |
Velocity | ⢠Highest at center ⢠Lowest at walls | Velocity in multiple directions |
Cell position | Cells in center | Random distribution |
Vessel condition | Normal vessels | Compressed / obstructed vessels |
Sound | Silent | Noisy âł Murmurs, Korotkoff sounds |
Reynolds Number (Re) | < 2000: Always laminar | > 3000: Always turbulent |
Determined by Reynolds Number (Re):Â
- Re = (Density x Diameter x Velocity) / Viscosity
- Velocity:
- Most important determinant
- due to Critical Velocity
Laplaceâs Law

Pressure = 2 x Tension / radius
- Tension Îą Radius
- Mnemonic: Place ( Radius, Laplace) vikkan ulla pressurum (Pressure) tension (Tension)
Poiseuille-Hagen Formula

- Calculates Vessel resistance
- R = 8 x Viscosity x Length / (Ď x Radiusâ´)
ă
¤ | Resistance | Flow |
Directly proportional | Blood viscosity & vessel length | Radius (Râ´) |
Inversely proportional | Radius (Râ´) | Length of vessel |
Poiseuille's Law (Formula for Blood Flow)
- F = ÎP x râ´ x Ď / 8hl
- F: Rate of blood flow
- ÎP: Pressure difference between vessel ends
- r: Radius of the vessel
- l: Length of the vessel
- h: Viscosity of the blood
Blood Pressure
Bernoulli's principle:
- Potential energy (Blood pressure) + Kinetic energy (Blood flow) = Constant.
- Therefore, BP + Blood flow = Constant.
- Mnemonic: Bernoulli Principe â BP
Formulas
BP analogues | Formula |
Pulse pressure | ⢠SBP - DBP |
Mean arterial pressure (MAP) | ⢠DBP + 1/3 pulse pressure ⢠1/3 SBP + 2/3 DBP ⢠Normal: 93-100 mm Hg |
Cerebral Perfusion Pressure | ⢠MAP â intracranial pressure |
Modes of Measurement
Direct Measurement | Indirect Measurement |
Invasive method. | Non-invasive method. |
Measures intraarterial BP directly. | Underestimates SBP by 10 mm Hg. |
Used mainly in animals (Research purpose). | Commonly used in clinical practice. |
ă
¤ | Performed using a sphygmomanometer. |
Indirect Blood Pressure Measurement
- Korotkoff Sounds
- Sounds heard during cuff deflation
- Used to determine BP.
Phase | Sound Description | Correlates To |
Phase 1 | Faint tapping sound | SBP |
Phase 2 | Murmur-like sound | ă
¤ |
Phase 3 | Crisp & clear sound | ă
¤ |
Phase 4 | Muffled sound | ă
¤ |
Phase 5 | Sound disappears | DBP |


Auscultatory Gap

- Silent interval
- Korotkoff sounds temporarily disappear
- then reappear during cuff deflation.
- Significance:
- Not recognizing it can lead toÂ
- DBP being overestimatedÂ
- SBP being underestimated
Causes of False BP Recordings
- Small size cuff used
- Obesity
- Thick & calcified vessel
Riva Rocci Cuff
- For accurate measurement:
ă
¤ | Cuff bladder should cover |
Length | ⢠80% of arm circumference |
Width | ⢠40% of arm circumference |
Direct Blood Pressure Measurement
Heart Chambers | SBP (mm Hg) | DBP (mm Hg) |
Right Atrium | 4 | 0 |
Right Ventricle | 25 | 5 |
Left Atrium | 12 | 4 |
Left Ventricle | 140 | 4 |




Â
Indicator | CVP | PCWP or Occlusion Pressure |
ă
¤ | M/c used indicator | Best indicator, more accurate. |
Purpose | Right heart function | Left heart function |
Equipment | CVC â Central Venous Catheter | PAC â Pulmonary Artery Catheter (Swan-Ganz) |
Normal Values | CVP: 0 â 5 cm HâO. | PCWP: 4 â 12 mmHg. |
Fluid Mx | â CVP + â BP â Give fluid â CVP + â BP (pump failure) â no fluid. | â PCWP â LV dysfunction. |
Long-Term Use | For TPN, inotropes, cardiac drugs. | ă
¤ |
Complication | Common: Arrhythmias. | Common: Arrhythmias. Dreaded: Pulmonary capillary rupture. |
Image | ⢠CV Catheter: Triple lumen, 7 Fr (20 cm) | Swan-Ganz catheter assembly |
Bainbridge Reflex:

- Fluid overload â Activates SA node â Tachycardia (âHR)
- Mnemonic: Stand above bridge â water rising â HRâ
- Receptor:Â Right Atrium wall.
- Activation: Increased stretch of RA wall
- from increased venous return
- Action:Â
- Increase in heart rate (inhibits parasympathetic)
- âANPÂ secretion
- âADHÂ secretion (Bridge to brain)
- Example:Â Congestive Cardiac Failure
- (due to Right atrium enlargement)
Bezold-Jarisch Reflex (Basilidis / Coronary Chemoreceptor Reflex):
- Mnemonic: Chest pain (MI) vannitt thala karangi (hypotension and bradycardia) â Jar of water eduth kudich
- MI â Serotonin release â Bradycardia & Hypotension
- Receptor:
- Chemoreceptors in Left Ventricular wall & Interventricular septum.
- Activation:
- Serotonin, Veratridine, Capsaicin
- Clinical:
- Coronary reperfusion/angiography dye
- High spinal anaesthesia
- Vaso-vagal syncope
- Triad:Â
- Severe Bradycardia
- Severe Hypotension
- Coronary Vasodilation
- Other:
- Apnea f/b hyperventilation â Dangerous.
Cushing's reflex:
- Head injury â âICT (Intracranial pressure) â Bradycardia (âHR).
Marys Law
- Baroreceptor reflex
- â BP â â HR (BP x HR = constant).
- Mnemonic: Maary cheyyumbo â BP kuudum, Rating ââ (HR)
Fluid Compartments & Measurement



- Total Blood Volume:
- Approx. 8% of total body weight.
- Plasma â 5%
- RBC volume â 3%
- Total Body Water (TBW):
Demographic | % Total Body Weight (Water) |
Children (General) | 75% |
Adult: Male | 60% |
Adult: Female | 50-55% |
Fluid Compartment | % Total Body Weight (TBW) | % Total Body Water (TBWtr) | Indicator used | Example Volume |
Total Body Water | 60% | 100% | ⢠Deuterium oxide ⢠Tritium oxide ⢠Antipyrine. | 42L (70kg) |
Intracellular Fluid (ICF) | 40% | 2/3 (66%) | Total Body Water volume - ECF volume. | 28 liters |
Extracellular Fluid (ECF) | 20% | 1/3 (33%) | ⢠Inulin ⢠Sucrose ⢠Sodium isotope ⢠Iodine isotope ⢠Mannitol | 14 liters |
Plasma: | 5% | 1/12 | ⢠Evan blue ⢠RISA [Radioactive Iodine 125 labelled albumin] | ă
¤ |
Interstitial fluid | 15% | 3/12 | ECF volume - Plasma volume. | ă
¤ |
RBC | ă
¤ | ă
¤ | ⢠51Cr, 59Fe tagged RBC | ă
¤ |
- Example (PV): TBW=48L.
- PV = (5% body weight / 60% body weight) * TBW
- = (5/60) * 48L = 4L.
Mnemonic:
- TBW â Water
- Pani â Antipyrine
- H2O â D2O, T2O
- ECF â good for swimming â I SSIM in ECF
- Inulin
- Sucrose
- Sodium isotope
- Iodine 125 isotope
- Mannitol
- Plasma
- Blue () Plasma (Plasma Protein) TV idu (iodine)
- RBC
- Crafted RBC â Cr51, Fe59
Measurement of Body water

- Principle:Â Volume of Distribution
- Using dilution principle
- Example (ECF): 500mg dose, 3mg/dL conc., 10% excreted â 450mg in body
- Volume = 15 L.
Other Physiological Formulae
Tetanizing Frequency
- Frequency to produce complete tetanus.
- Calculation:
- 1
Contraction period (in seconds) - 1000
Contraction period (in ms)
- Example:
- Contraction period = 40 ms â Tetanizing frequency = 1000/40 = 25 Hz.

Gain (Physiological Control Systems)
- Gain = How much corrected
Residual Error
- Normal baroreceptor gain:Â - 2.
- Correction is opposite to disturbance
- Thermoregulatory gain:Â - 33
- Very powerful
Sensation | TRP Channels | ă
¤ |
For Heat | â˘Â TRP V1 (Vanilloid) | V1 A1 M2 M3 |
ă
¤ | â˘Â TRP M2 | ă
¤ |
ă
¤ | â˘Â TRP M3 | ă
¤ |
For Cold | â˘Â TRP M8 (Menthol) | 8 â snowman â cold |
ă
¤ | â˘Â TRP A1 | ă
¤ |
- Renal control of blood pressure and blood volume
- Infinite gain:
- 100% correction of BP/volume to normal
- Gain = Correction / 0 =Â Infinity.
- NO RESIDUAL ERROR
- Slow system, takes time
Serum Osmolality
- Osmolarity of Na+:Â 300 mosm/L.
- Sodium > BUN > Glucose
- Mnemonic: Sodayum (200 Rs) Bunum (36 rs) Sugarum (5 rs)

Sodium deficit (mEq) in Hyponatremia
- = (desired - actual sodium) x TB Water
- = (Desired Sodium - Current Sodium) Ă Body Weight (kg) Ă 0.6
- TBW = 60% BW
- Desired = 140
Free Water deficit in Hypernatremia
- (Na - 140) x TBW
Na
Respiratory Formulas
Reflex | Hering Breuer inflation reflex | Hering Breuer deflation reflex | Head's Paradoxical reflex | J Reflex |
Significance | Prevents lung injury due to overstretching | Prevents lung collapse | To replace fluid with air in fetal lung | Detects pulmonary edema |
Mechanism | Prolonged inspiration | Prolonged expiration | Prolonged inspiration | Pulmonary edema â Activates J (Juxtapulmonary) receptors |
Effect | Further inspiration stops â Next expiration begins | Further expiration stops â Next inspiration begins | Further inspiration | Apnea, breathlessness, hypotension, bradycardia |
Feedback Neural signal | Myelinated vagal fibres (Slow adapting) | Myelinated vagal fibres (Slow adapting) | - | Unmyelinated vagal fibres (Slow C fibres) |
Factors Affecting Diffusion (Fick's Law)
Directly Proportional | Inversely Proportional |
Concentration gradient (High â low) | Thickness respiratory membrane |
Surface area of respiratory membrane | Size of particle |
Lipid solubility of gas | ă
¤ |

Terms | Formulae |
Minute Ventilation | ⢠Tidal Volume x Respiratory Rate |
Alveolar Ventilation Rate | ⢠(Tidal Volume - Dead Space Volume) x Respiratory Rate ⢠VD â 150 mL |
PiO2 | [Barometric Pressure - Pressure of H2O] x FiO2 ⢠Standard PH2O at body temp: 47 mmHg ⢠FiO2 room air: 0.21 |
Residual Volume | ⢠FRC - ERV |
Respiratory Quotient | Volume of CO2 produced Volume of O2 consumed |
Lung Compliance | ⢠ÎV / ÎP |
- Oxygen Carrying Capacity of Hemoglobin
- Hb bound + Dissolved O2
- Hb bound = Hb x 1.34 (mL O2/g Hb) x Oxygen Saturation (%)Â
- [Assume 100% Sat if not given]
- Dissolved O2 = PaO2 x 3 x 10 ^(-3)
- Example: Hb=14 g/dL â Capacity â 18.8 mL O2/dL.

Renal Physiology
- Clearance:
- Definition: Volume of plasma completely cleared of a substance per unit time.
- Clearance (C) = (U x V)
P
ă
¤ | ă
¤ | ă
¤ |
U | Urinary concentration of substance | mg/mL |
V | Urine flow rate (volume/minute) | mL/min |
P | Plasma concentration of substance | ă
¤ |
(U x V) | Amount of substance excreted in urine per minute | mg/min |
- Glomerular Filtration Rate (GFR):
Clearance | ă
¤ | ă
¤ |
Creatinine | GFR + Tubular secretion | Overestimates GFR. |
Urea | GFR - Tubular reabsorption | Underestimates GFR. |
Inulin | = GFR â 100-120 mL/min | Gold standard test |
- Filtration Fraction (FF)
- Formula:Â FF = GFR / RPF = 0.1 to 0.2
- Renal Plasma Flow (RPF):Â 700 ml/minÂ
- (Clearance of PAH)
- Renal Blood Flow (RBF):Â 1200 ml/min.
- Importance of FF
- After filtration, peritubular capillaries has:
- â Protein concentration
- â Oncotic pressure
- Favors reabsorption of water + solutes from tubules
- Helps maintain medullary osmotic gradient
- Fractional Excretion of Sodium (FeNa)
- (Clearance of Sodium / GFR)Â ORÂ
- (Urine Sodium x Plasma Creatinine) / (Plasma Sodium x Urine Creatinine)
- Reabsorption Rate:
- Filtered Load - Excreted Load.
- Interpreting Clearance vs. GFR
Substance secreted [Clearance > GFR] | Clearance | ă
¤ |
PAH | ⢠625 ml/min d/t high secretion Ⳡlower concentrations = RPF Ⳡhigher concentration = Falsely Low | = Renal Plasma Flow (RPF) |
Creatinine | ⢠Secreted | ⢠< PAH clearance ⢠> Inulin clearance |
Neither secreted Nor absorbed | ă
¤ | ă
¤ |
Inulin | ⢠Freely filterable ⳠUrinary Amount = Filtration Rate ⢠125 ml/min ⢠Constant regardless of plasma concentration | = GFR |
Substance reabsorbed [Clearance < GFR] | ă
¤ | ă
¤ |
⢠Urea ⢠Sodium and Potassium ⢠Glucose / Amino Acids | Glucose / Amino Acids ⢠Completely reabsorbed ⢠Clearance: Zero (Non diabetic) | Diabetic: High plasma levels â transporter saturation â substance in urine â positive clearance |
- Net Filtration Pressure (NFP)
- (Glomerular Hydrostatic Pressure + Bowman's Osmotic Pressure) -
- (Bowman's Hydrostatic Pressure + Plasma Colloid Osmotic Pressure)
Cardiovascular Physiology (CVS)
Cardiac Output (CO)
- Fick's Law Formula:Â
- Oxygen Consumption
(Arterial Oxygen Content - Venous Oxygen Content) - Gold standard for CO
- Invasive
- Requires pulmonary artery catheterization
- to get mixed venous blood
- Example
- O2 Consumption=300 mL/min
- Arterial O2=20 mL/dL
- Venous O2=16 mL/dL
- CO = 300 / (20-16) = 75 dL/min = 7.5 L/min.
- Echo, Thermodilution, Dye dilution method
- Also be used to find CO
MET (Metabolic Equivalent)
- O2 consumption at rest:
- 250 ml/min â 1 MET (Metabolic equivalent)
- = 3.5 mL O2 / kg / minute
- During exercise:
- â Oâ consumption â â MET.
- Peak VOâ:Â
- Oâ consumed at the end of exercise
- VOâ max:
- Maximum possible Oâ consumptionÂ
- (Theoretical value).
Standard Formula | Formula |
Cardiac Output | Stroke Volume x Heart Rate |
Stroke Volume | EDV - ESV |
EDV | EDVÂ =Â ESVÂ / (1Â -Â EF) |
ESV | ESVÂ =Â EDVÂ (1Â -Â EF) |
Ejection Fraction | ⢠(Stroke Volume / End Diastolic Volume) x 100 ⢠Normal EF: 55 - 60% |
Bazett's Formula | ⢠QTc (Corrected QT) = QT interval / â(RR interval) ⢠Account for QT interval length variation with heart rate |