Renin-Angiotensin-Aldosterone System (RAAS)😊

notion image

Lactic Acidosis

Types of Lactic acidosis
Notes
Type A
Hypoperfusion / hypoxia

Examples
• Shock
• Cardiac failure
• Severe anemia
• Carbon monoxide toxicity
• Cyanide toxicity
Type B
metabolic causes with normal oxygenation

Examples
• Malignancy
• Renal failure
• Hepatic failure
• Drugs: metformin, ethanol, ethylene glycol, methanol
• Diabetes mellitus
• Seizures
• Severe malaria / cholera
notion image
notion image

Renin-Angiotensin-Aldosterone System (RAAS)

notion image
  • Initiated: In response to low BP.
Mediator
Effect
Angiotensin II
↑ BP (direct vasoconstriction)
• Stimulates 
aldosterone release (from adrenal cortex)
Aldosterone
↑ Na+ reabsorption

Clinical Relevance:

  • Overactive RAASHypertension
  • Treatment of HTN:
    • ACE inhibitors
  • Direct renin blockers: 
    • Aliskiren (blocks renin directly).

Calculation of GFR

Equation
Best
CKD-EPI equation > MDRD equation

(
Modification of Diet and Renal Disease /
Chronic Kidney Disease Epidemiology Problems Initiative)
Bedside
Cockcroft and Gault equation

Cockcroft and Gault Equation

  • Creatinine clearance = (140 - Age) x Body weight x 0.8 (if female)
    72 x S. creatinine

Problems with Cockcroft and Gault Equation

Clearance
Creatinine
GFR + Tubular secretion
Overestimates GFR.
Urea
GFR - Tubular reabsorption
Underestimates GFR.
Inulin
= GFR ≈ 100-120 mL/min
Gold standard test

Advantages of CKD-EPI and MDRD Equations

  • Calculate GFR directly.
  • Use standardized methods for creatinine estimation.
  • Based on isotope dilution mass spectroscopy.
  • Have replaced weight with race in calculations.

Erythropoietin Source

Kidney
Liver
Secretion
85-90%.
10-15%.
Cellular Source
Peritubular capillary cells
Perivenous hepatocytes
  • Note:
    • ReninJG cells
    • Erythropoietin Peritubular capillary cells

Clearance

  • Definition: Volume of plasma completely cleared of a substance per unit time.
    • Clearance (C) = (U x V)
      P
    • U
      Urinary concentration of substance
      mg/mL
      V
      Urine flow rate (volume/minute)
      mL/min
      P
      Plasma concentration of substance
      (U x V)
      Amount of substance excreted in urine per minute
      mg/min

Urinary Amount =

  • Filtration + Secretion - Reabsorption.

Problems with Creatinine

  • More muscle mass = more creatinine.
    • Not dependent on obesity.
  • Time gap between AKI and Creatinine rise
    • 24 to 48 hours
  • Overestimates GFR.
  • Physiologically, rise after 40 years
  • False ↑↑ when using drugs like trimethoprim and cimetidine
    • Compete with Creatinine for tubular secretion

Other markers

New Markers
Early Markers for AKI
Cystatin C
↳ For Patients with extremes of muscle mass
↳ Non-specifically elevated in inflammation
Kidney Injury Molecule 1 (KIM-D)
Neutrophil Gelatinase Associated Lipocalin (NGAL)
Liver Fatty Acid Binding Protein (LFABP)
TIMP2, IGFBP7.

Graphs Illustrating Nephron Handling

notion image
notion image
notion image
notion image
notion image

Clearance Sequence (Highest → Lowest):

  • PAH > Creatinine > Inulin > Urea > Sodium/Potassium > Glucose.
  • PCI → UCN → HGA

Inulin Clearance

  • Filtration Rate = GFR = 125 ml/min
    Plasma Concentration

Substances

Substance secreted
[
Clearance > GFR]
Clearance
PAH
625 ml/min d/t high secretion
lower concentrations = RPF
higher concentration = Falsely Low
= Renal Plasma Flow (RPF)
Creatinine
Secreted
< PAH clearance
> Inulin clearance
Neither secreted
Nor absorbed
Inulin
Freely filterable
Urinary Amount = Filtration Rate
125 ml/min
Constant regardless of plasma concentration
= GFR
Substance reabsorbed
[
Clearance < GFR]
Urea
Sodium and Potassium
Glucose / Amino Acids
Glucose / Amino Acids
Completely reabsorbed
Clearance: Zero (Non diabetic)
Diabetic: High plasma levels → transporter saturation → substance in urine → positive clearance

Secretion of Para-Amino Hippuric Acid (PAH)

notion image
  • 1. Early part of excretion:
    • Curve is more steep.
    • Involves both Filtration + secretion.
  • 2. Late part of excretion:
    • Curve becomes less steep.
    • Only Filtration.

Saturation of SGLT-2 (Glucose Reabsorption)

notion image

Maximum transport capacity (TmG) of SGLT-2

  • At 200 mg/dL of plasma glucose
    • 375 mg/min of glucose is reabsorbed.
  • Saturation occurs.
  • Excess glucose is excreted (glycosuria).

Splay

  • Occurs due to:
    • Diverse/heterogeneous nephrons.
    • Each nephron has different TmG.
  • Causes early appearance of glucose in urine before actual TmG.
notion image
Ans
3
Clearane = uv/p = 10
less than 125 mg/ml

Graph: TF/P Ratio vs Proximal Tubule Length

notion image

  • TF/P = Tubular Fluid / Plasma concentration ratio

Key Concepts

TF/P
Reabsorption
> 1
< water
Creatinine, Cl⁻
= 1
= water
Urea, Na⁺, Osm
< 1
> water
HCO₃⁻, Amino Acids, Glucose

Water Reabsorption and ADH Action

notion image
Segment
% of filtered water reabsorbed
Obligatory Water Reabsorption
(ADH Independent)
PCT
65-70%
(Maximum with or without ADH)
Descending Thin Segment
15%
Water Impermeable Segment
Thick Ascending Limb (TAL) 
0 %
Facultative Water Reabsorption
(ADH Dependent)
WITH ADH
WITHOUT ADH
CD >> DCT
~2% 
~15%

Mechanism of ADH Action (on collecting duct cells):

notion image
  • Most potent stimulus for ADH secretion.
    • Plasma osmolality > 280 mOsm/L
  • MOA
    • Acts on collecting duct cells → bind V2 receptors.
    • Activate V2 receptor (basolateral) → ↑ cAMP
    • ↑↑ cAMP → AQP2-containing vesicles fuse with luminal membrane water enters cell from tubular lumen
  • Water exits to blood via AQP3/AQP4 (basolateral, constitutive, not ADH-regulated).

Diabetes Insipidus

notion image
notion image
Central/Neurogenic DI
Nephrogenic DI
ADH secretion
Low plasma ADH
ADH action
↓↓
[d/t mutation of V2 receptor gen]
ADH injection
Reduces urine volume.
• Does not reduce urine volume.
• Urine osmolality remains low

Countercurrent System

notion image
Osmolality
Serum
285–290 mOsm/kg
Urine
800–900 mOsm (more concentrated)

Kidney mechanism

  • Countercurrent multiplicationLoop of Henle
  • Countercurrent exchangeVasa recta

Requirements (4):

  1. Two parallel tubes
  1. Opposite flow
  1. Close proximity
  1. Selective permeability

Other countercurrent systems (MCQ-relevant):

  • True countercurrent:
    • Kidney (Loop of Henle)
    • Testes (Pampiniform plexus)
    • Intestinal villi
    • Skin (heat exchange)
  • Not true countercurrent:
    • LungsCrosscurrent
    • Liver

Medullary Hyperosmolarity

notion image
Function
Section
Creation
Countercurrent Multiplier
Loop of Henle
Maintenance
Countercurrent Exchanger
Vasa recta
  • Medullary Hyperosmolarity
    • Enables ADH-dependent water reabsorption in collecting ducts
  • Note
    • highest osmolality with
      • Inner medulla
      • Longer LOH (up to 1200 mOsm).
      • Long LOH
        Short LOH
        Includes
        Juxtamedullary nephron
        Cortical nephron.
        %
        15%
        85%
        Role
        Responsible for concentration & dilution of urine

ADH (Vasopressin)

  • Receptor: V2 receptors (Basolateral membrane of CD).
  • Mechanism: ↑ cAMP → ↑ Expression of Aquaporin 2 (Luminal membrane).
  • Result: Reabsorption of salt-free water utilizing medullary hyperosmolarity.

1. Medullary Hypertonicity

Substance
Contribution
Source / Mechanism
Na + Cl
60% 
Na = 30%
Cl = 30%
Thick Ascending Limb of LOH. 
Urea
40%
• Single most important substance
Collecting Duct (CD) via UTA1 & UTA2
• Contribution 
↑ with high protein diet

2. Loop of Henle: Countercurrent Multiplier

  • Input: Isotonic fluid (300 mOsm/L) from PCT
  • Function: Concentrates and dilutes urine
Thin Descending Limb
Thick Ascending Limb
aka
Concentrating Segment
Diluting Segment
Role
Generation of medullary hypertonicity
Active solute reabsorption
Single effect:
Na+ transport without water
Permeability
Permeable to Water 
• Impermeable to Na+.
Permeable to Solutes
• Impermeable to Water
Mechanism
Water is reabsorbed via AQP1
↳ Tubular fluid concentrates
Na+, K+, Cl- cotransporter
↳ ⛔ by Loop diuretics
Osmolality
300 → 600 → 900 → 1200 mOsm/L 
1200 → 900 → 600 → 100 mOsm/L
  • Note: Outer medullary osmolality remains 290 mOsm.

3. Vasa Recta: Countercurrent Exchanger

notion image
notion image
  • Structure: Blood vessels running alongside LOH.
  • Mechanism: Acts as a countercurrent exchange system.
  • Urea Role:
    • Maintain interstitial osmolality created by LOH.
    • Reabsorbed from inner medullary collecting duct.
    • Recycled via Vasa Recta.

4. Collecting Duct (CD)

  • Water Reabsorption:
    • H2O exits to medulla via AQP2-4.
    • Regulated by ADH.
  • Urea Reabsorption:
    • Occurs in Inner Medulla.
    • Moves to interstitium via UT-A1.

5. Urea recycling:

notion image
  • Goal: Keeps Urea within medullary interstitium to maintain high osmolality gradient.
    • Step
      Location
      Transporter
      Entry
      Descending limb of Vasa Recta
      UT-B
      Exit
      Ascending limb of Vasa Recta
      UT-B
      Re-entry
      Thin Descending Limb of LOH
      UT-A2

Filtration Fraction

  • Formula: FF = GFR / RPF = 0.1 to 0.2
  • Renal Plasma Flow (RPF): 700 ml/min 
    • (Clearance of PAH)
  • Renal Blood Flow (RBF): 1200 ml/min.
  • Importance of FF
    • After filtration, peritubular capillaries has:
      • ↑ Protein concentration
      • ↑ Oncotic pressure
    • Favors reabsorption of water + solutes from tubules
    • Helps maintain medullary osmotic gradient
  • Fractional Excretion of Sodium (FeNa)
    • (Clearance of Sodium / GFR) OR 
    • (Urine Sodium x Plasma Creatinine) / (Plasma Sodium x Urine Creatinine)

Ion Reabsorption

Ion
Location
Lumen to Cell
Cell to Peritubular Capillary
Ca2+
Ascending LOH
Na+K+2Cl- cotransporter
K+ recycling
↳ creates positive charge 
K+ repels Ca2+/Mg2+
↳ Reabsorbed


Ca2+
DCT

[9% filtered load  of calcium]
Transient receptor potential vanilloid channel (TRPV 5)

↑↑ by
PTH and Vitamin D
Na+-Ca2+ exchanger

Cl-
Ascending LOH
(LOH cells)
Na+K+2Cl- cotransporter
Chloride channel (Barttin)
Na+
DCT

[5% filtered load]
Na+-Cl- cotransporter
Na+-K+ pump

Note

  • Hormone Responsible for Calcium absorption
    • PTH and Vit D → Upregulate TRPV 5 in DCT
  • Ion responsible for Calcium and Magnesium (Divalent ions)
    • K+ → Ascending LOH
REABSORPTION OF Ca2+ → 1. Ascending Loop of Henle (LOH) cells.
REABSORPTION OF Ca2+ → 1. Ascending Loop of Henle (LOH) cells.
REABSORPTION OF Ca2+ → 2. Distal Convoluted Tubule (DCT)
REABSORPTION OF Ca2+ → 2. Distal Convoluted Tubule (DCT)
REABSORPTION OF Cl- in the LOH cells
REABSORPTION OF Cl- in the LOH cells
Sodium Reabsorption in DCT
 ↳ Gitelman's syndrome
Sodium Reabsorption in DCT
Gitelman's syndrome

Bartter Syndrome

notion image
  • AR inheritance
  • Defect:
    • Na⁺-K⁺-2Cl⁻ cotransporter (TAL of LoH) OR
    • Barttin channel
  • Consequences:
    • Polyuria, salt wasting
    • ↑Ca²⁺ excretionNephrocalcinosis
    • Activation of RAAS ↑ Na+, H2O reabsorption Normal/low BP
    • Hypokalemic hypochloremic metabolic alkalosis

Reabsorption in PCT

notion image
Hormones with action on PCT
Function
Notes
PTH
↑ PO4 excretion
Angiotensin
↑ Na/ H2O/ Bicarbonate
Contraction alkalosis
Acetazolamide
⛔ reabsorption of HCO3
Acidazolamide RTA 2
SGLT2⛔
⛔ reabsorption of glucose
Glucosuria

Proportional Reabsorption of Filtered Substances

Substance
Lumen to PCT Cell
Percentage Reabsorbed
Notes
NaCl
Na⁺-H⁺ exchanger
67% (2/3rd)
H₂O
67% (2/3rd)
ISOTONIC ABSORPTION
Equal Na⁺ and H₂O are reabsorbed.
• Results in 
isotonic fluid PCT
K⁺
67% (2/3rd)
Urea
67% (2/3rd)
Ca²⁺
70%
Phosphate
Na⁺-PO₄²⁻ cotransporter
80%
Bicarbonate
80%
Glucose
SGLT 2
100%
PCT is the only segment absorbing glucose
Amino acids
Na⁺-amino acid cotransporter
100%

Chloride (Cl⁻) Reabsorption:

  • Cl⁻ ↑↑ in concentration in lumen
    • Due to preferential Na⁺ absorption in the early PCT.
  • Cl⁻ is reabsorbed in the later parts of the PCT.
notion image
Class
MOA & Site
Enzyme
Effects
Carbonic Anhydrase Inhibitors /

PCT
Block carbonic anhydrase

(Fanconi)
Fanil acid ozhich
Hypokalemic Metabolic acidosis
Acidazolomide
Sulfa drug
Hypokalemia
Acidosis (HCO₃⁻ loss)

Loop Diuretics
TAL
Block Na+-K+-2Cl- pump/
Chloride channel (Barttin)

(Bartter syndrome)

Loop diuretics → all low
• Hyponatremia
Hypokalemia
• Gout
Hypochloremia
Hypocalcemia
Indirect vasodilators
(↑ prostaglandins).

Hypokalemic hypochloremic metabolic alkalosis +
↑Ca²⁺ excretion
(Nephrocalcinosis)
Thiazides

DCT
Block Na-Cl cotransporter

(Gitelman syndrome)

Gitel man → Gita maggy (magnesium) undakk

• Hyponatremia
• Hypokalemia
• Gout
Postural Hypotension
Hyperglycemia
Hypercalcemia
Hypomagnesemia
Direct vasodilators
open K+ channels

Hypokalemic metabolic alkalosis +
Hypomagnesemia
Osmotic Diuretics
PCT & loop
Solute-free water loss
Potassium-Sparing Diuretics
Spironolactone/
Eplerenone:

CD
Block aldosterone.

• Hyponatremia
Hyperkalemia
Gynecomastia
Amiloride
CD
Blocks ENaC
(Liddle syndrome)
SCNN1B/G genes
AD inheritance
Little Hypertensive
• Hyponatremia
Hyperkalemia
• Alkalosis + HTN

Mnemonic: FABulous Glittering Liquid

  • Gordon
    • Opp of Gitelman
  • Psudo-hypoaldosteronism
    • Opp to Liddle

Thiazide diuretics and Gitelman

  • ↓↓ activity of TRP Mg channels → Hypomagnesemia

Cystometrogram

notion image
notion image
Segment
Bladder Vol.
Bladder Press
Reason
1a:
till 100 mL
Small pressure rise
At
150 mL
1st urge to void
1b
100 - 400 mL
Pressure remains constant
Laplace's Law (Pressure ∝ Wall Tension / Radius)
Plasticity property of smooth muscle
2:
> 400 mL
rises sharply
Triggers micturition reflex 

Aquaporins

Applied Aspect

Vaptans (conivaptan)

  • Vasopressin receptor blockers
    • ↑↑ pure water excretion in urine.

Vasopressin escape

  • In SIADH
  • Kidney escapes ADH effect by downregulation of Aqp-2.

Factors Affecting ADH Secretion

  • ↑↑ ADH Secretion 
    • Painful stimuli
    • Nausea and vomiting
    • ↑ osmotic pressure
    • ↓ ECF volume
  • ↓↓ ADH Secretion
    • Alcohol (inhibits ADH)
    • ↓ osmotic pressure
    • ↑ ECF volume

Actions Mediated by Vasopressin Receptors

Receptor
Site
Drug
Use
V1
Blood vessel
Vasoconstriction
Terlipressin 
Esophageal varices
V2
Collecting duct

Vascular endothelium
Release of vWF
Desmopressin 
(ROA: Intranasal)
Von willebrand disease
V3
Anterior pituitary
ACTH release
-

Free Water Clearance

notion image
Seen In
Clearance Type
Urine Concentration
ADH Level
SIADH
Negative
↑↑↑↑
High
Diabetes insipidus
Positive
↓↓↓↓
Low/absent

Natriuretic Peptides

  • Messenger: cGMP.
  • Types of Natriuretic Peptides
    • Type
      Site
      Analogue
      A type (ANP)
      Atrium
      B type (BNP)
      Ventricles
      Nesiritide
      C type (CNP)
      Vascular endothelium
  • Site of Action
    • Terminal DCT and CD.
  • Actions
    • Action
      Key Point
      Mechanism / Effect
      1
      Natriuresis
      Afferent arteriole dilation → ↑ GFR → ↑ Na⁺ excretion
      2
      Physiological Antagonism With RAAS
      ↑ Na⁺ → ANP activated;
      ↓ Na⁺ → RAAS activated
      Regulation
      ↑ ANP
      Fluid overload
      Stretch of atria↑ ANP release
      ↓ ANP
      Hypovolemia
      Reduced atrial stretch↓ ANP release

Aldosterone escape:

  • Kidneys escape effect of aldosterone in hyperaldosteronism.
  • ↑↑ aldosterone → ↑↑ Na+ & H2O reabsorption → ↑↑ BP
    • but no edema
    • d/t ANP: Pressure diuresis

Aldosterone

notion image
  • t½: 20 mins.

Site 1: Primarily in Principal Cell (CD)

  • Collecting duct
  • Aldosterone acts on Mineralocorticoid Receptor (MR)
    • MR (Inactive) → Aldosterone binding → Active MR → ↑↑ activity of
    • Specific Channels
      Function
      ENaC
      ↑ Na⁺ reabsorption
      ROMK
      (Renal Outer Medullary K⁺ channel)
      ↑ K⁺ secretion
      Na⁺-K⁺ ATPase (basolateral membrane):
      Pumps 3 Na⁺ out and 2 K⁺ into the cell → maintaining gradient.
    • Overall: Na⁺ reabsorption & K⁺ secretion.

Site 2: Type A Intercalated Cell (DCT)

  • ↑ H⁺ secretion via H⁺-ATPase
  • Overall: H⁺ secretion and HCO₃⁻ reabsorptionMetabolic alkalosis
    • notion image

MR sites:

  • Kidneys, colon, hippocampus, salivary glands, sweat glands.

Factors Regulating Aldosterone Synthesis

  • Hyperkalemia Stimulates aldosterone release.
  • ACTH Increases aldosterone transiently.

Intercalated cells

Dominant Cell
Site
Process
Result
Type A intercalated
• DCT
A Attract B
H⁺ secreted,
HCO₃⁻ reabsorbed
In Acidosis →
↑ plasma HCO₃⁻
Type B intercalated
• Late DCT
• Cortical collecting duct
B Repel B
H⁺ reabsorbed,
HCO₃⁻ secreted
In Alkalosis →
↓ plasma HCO₃⁻ (excreted)

Bicarbonate Excretion

notion image
  • Proximal Tubule (85%)
    • via Na⁺/H⁺ exchanger (NHE3)
  • Type B intercalated cells
    • Actively secrete HCO₃⁻ via pendrin
    • Pendrin = major transporter for HCO₃⁻ excretion.
notion image